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Introduction

Definition A bounded linear operator T : X → Y between Banach spaces is said
to be semi-Fredholm if T (X ) is closed in Y and at least one of the subspaces
ker T , Y /T (X ) is finite-dimensional. Then the index of T is given by

ind(T ) := dim(ker T )− dim(Y /T (X )) .

If ind(T ) is finite, T is called a Fredholm operator.

Properties of Fredholm operators:

• If T : X → Y is a Fredholm operator, then there exist a closed vector
subspaces V of X and a finite dimensional subspace W of Y such that

X = ker T ⊕ V and Y = T (X )⊕W .

In particular, the surjective operator T |V : V → T (X ) is an isomorphism.
• If T : X → Y is a Fredholm operator, then T ∗ : Y ∗ → X∗ is also a Fredholm

operator and
ind(T ∗) + ind(T ) = 0 .
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Introduction

• If T : X → Y and S : Y → Z are Fredholm operators, then ST : X → Z is
also a Fredholm operator with

ind(ST ) = ind(T ) + ind(S) .

• If dim X =∞ and T : X → Y is a Fredholm operator and S : X → Y is
a strictly singular operator, then T + S is a Fredholm operator with

ind(T + S) = ind(T ) .

• If X is a Banach space and S : X → X is a strictly singular (in particular
a compact) operator, then IX − λS is a Fredholm operator for every λ and

ind(IX − λS) = 0 .
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Introduction

Theorem [Atkinson (1951)] For an operator T : X → Y between Banach spaces
the following statements are equivalent:

(i) T is Fredholm operator;
(ii) There exist finite rank operators K1 : X → X and K2 : Y → Y and an

operator S : Y → X such that

ST = IX − K1 and TS = IY − K2 .
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Introduction

Remarks (The Fredholm Alternative) If X is a Banach space and K : X → X
is a compact operator, then for every λ 6= 0 exactly one of the following two
exclusive statements is true:

(i) For every y ∈ X the equation x − λKx = y has a unique solution;
(ii) The equation x − λKx = 0 has a non-trivial solution.

When (ii) is true, the equation x − λKx = 0 has a finite number of linearly
independent solutions.

Theorem Every Fredholm operator T : X → Y between Banach spaces has
a pseudoinverse which is also Fredholm operator, i.e., such an operator
S : Y → X satisfying:

TST = T .

In particular this yields that the equation Tx = y has a solution if and only
if Sy is a solution of this equation.
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Introduction

• A mapping F : ~B → B from the category ~B of all couples of Banach spaces
into the category B of all Banach spaces is said to be an interpolation functor
if, for any couple ~X := (X0,X1), the Banach space F (X0,X1) is intermediate
with respect to ~X (i.e., X0 ∩ X1 ⊂ F (X0,X1) ⊂ X0 + X1), and

T |F (X0,X1) : F (X0,X1)→ F (Y0,Y1) for all T : (X0,X1)→ (Y0,Y1);

• T : (X0,X1)→ (Y0,Y1) means that T : X0 + X1 → Y0 + Y1 is a linear
operator such that the restrictions of T to the space Xj is a bounded
operator from Xj to Yj , for both j = 0 and j = 1.

• An interpolation method F is said to be regular if for every Banach couple
(X0,X1) the intersection X0 ∩ X1 is dense in F (X0,X1).
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Introduction

• The real method For θ ∈ (0, 1) and q ∈ [1,∞], (X0,X1)θ,q is defined as the
Banach space of all x ∈ X0 + X1 equipped with the norm

‖x‖θ,q =
(∫ ∞

0

[
t−θK (t, x ; ~X )

]q dt
t

)1/q
,

where

K (t, x ; ~X ) := inf{‖x0‖X0 + t‖x1‖X1 ; x = x0 + x1}, t > 0.

• For all θ ∈ (0, 1) and q ∈ [1,∞), F := ( · )θ,q is a regular interpolation
functor.
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• The complex method Let S := {z ∈ C; 0 < Rez < 1} be an open strip on
the plane. For a given θ ∈ (0, 1) and any couple ~X = (X0,X1) we denote by
F(~X ) the Banach space of all bounded continuous functions f : S̄ → X0 + X1
on the closure S̄ that are analytic on S, and

R 3 t 7→ f (j + it) ∈ Xj , j = 0, 1

is a bounded continuous function, and equipped with the norm

‖f ‖F(~X) = max
{

sup
t∈R
‖f (it)‖X0 , sup

t∈R
‖f (1 + it)‖X1

}
.

The Calderón (lower) complex interpolation space [~X ]θ := {f (θ); f ∈ F(~X )}
and is equipped with the norm:

‖x‖θ := inf
{
‖f ‖F(~X); x = f (θ)

}
.
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Theorem
[I. Ya. Shneiberg (1974)] If T : (X0,X1)→ (Y0,Y1) is such that

T : [X0,X1]θ∗ → [Y0,Y1]θ∗

is invertible (resp., Fredholm) for some θ∗ ∈ (0, 1), then there exists ε > 0 such
that

T : [X0,X1]θ → [Y0,Y1]θ

is invertible (resp., Fredholm) and the index is constant for all θ ∈ (θ∗ − ε, θ∗ + ε).
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The majorization property for interpolation functors

The majorization property for interpolation functors

An operator T : (A0,A1)→ (B0,B1) between Banach couples is said to be
invertible whenever the restriction T |Aj : Aj → Bj is invertible (i.e., T is an
isomorphism of Aj onto Bj) for both j = 0 and j = 1.

Lemma
Let (A0,A1) and (B0,B1) be Banach couples and let T : (A0,A1)→ (B0,B1)
be an invertible operator. Then, the following conditions are equivalent:
(i) (T |A0 )−1b = (T |A1 )−1b, b ∈ B0 ∩ B1 ;
(ii) T : A0 + A1 → B0 + B1 is invertible ;
(iii) For every interpolation functor F ,

T |F (A0,A1) : F (A0,A1)→ F (B0,B1) is invertible.
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The majorization property for interpolation functors

• Remark Let ~X = (X0,X1) be a complex couple and T : (X0,X1)→ (X0,X1)
be an operator. If 0 < α < β < 1 and Tα := T |[~X ]α and Tβ := T |[~X ]β are
invertible, then the inverses T−1

α and T−1
β do not coincide on X0 ∩ X1 in

general.

• Example The dilatation operator Da (a > 0, a 6= 1) given by Daf (t) = f (at),
t > 0 is bounded on Lp = Lp(R+) for every 1 < p <∞ and

σ(Da, Lp) =
{
λ ∈ C; |λ| = a−1/p}.

If |λ| = a−1/p, p0 < p < p1, then T = λI − Da : (Lp0 , Lp1 )→ (Lp0 , Lp1 ) is
invertible. Since

Lp0 = [L1, L∞]α, Lp1 = [L1, L∞]β

with α = 1− 1/p0 and β = 1− 1/p1, it follows that T is not invertible on
Lp = [Lp0 , Lp1 ]θ, where 1/p = (1− θ)/p0 + θ/p1.
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The majorization property for interpolation functors

Let F and G be interpolation functors. We have introduced the following key
definitions:

• G is said to be majorized by F for invertibility if, for any Banach couples
(X0,X1), (Y0,Y1) and any operator T : (X0,X1)→ (Y0,Y1), invertibility
of the operator T |F (X0,X1) : F (X0,X1)→ F (Y0,Y1) implies invertibility of

T |G(X0,X1) : G(X0,X1)→ G(Y0,Y1) .

• G is said to be majorized by F for the Fredholmness property if, for any
Banach couples (X0,X1), (Y0,Y1) and any operator T : (X0,X1)→ (Y0,Y1)
the Fredholmness of the operator T |F (X0,X1) : F (X0,X1)→ F (Y0,Y1) implies
the Fredholmness of

T |G(X0,X1) : G(X0,X1)→ G(Y0,Y1) .
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The majorization property for interpolation functors

Theorem
[I. Asekritova, N. Kruglyak and M. M.] Suppose that the functor G is majorized
by the regular functor F for invertibility. Then, for any regular Banach couples
(X0,X1), (Y0,Y1) and any operator T : (X0,X1)→ (Y0,Y1), the Fredholmness of
the operator T : F (X0,X1)→ F (Y0,Y1) implies the Fredholmness of the operator
T : G(X0,X1)→ G(Y0,Y1) with equality of indices:

ind(T |G(X0,X1)) = ind(T |F (X0,X1)).

The above theorem in combination with our other results gives the following:

Theorem
The real interpolation functors

Kθ,q( · ) := ( · )θ,q

are majorized by the functor Cθ( · ) := [ · ]θ for the Fredholmness property.
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The majorization property for interpolation functors

Theorem

Let T : (X0,X1)→ (Y0,Y1) be an operator between couples of complex Banach
spaces. If T : [X0,X1]θ∗ → [Y0,Y1]θ∗ is invertible for some θ∗ ∈ (0, 1), then

T : (X0,X1)θ∗,q → (Y0,Y1)θ∗,q

is invertible for all q ∈ [1,∞].

Theorem

If T : (X0,X1)→ (Y0,Y1) is such that T : [X0,X1]θ∗ → [Y0,Y1]θ∗ is Fredholm
then for all 1 ¬ q ¬ ∞ the operator

T : (X0,X1)θ∗,q → (Y0,Y1)θ∗,q

is Fredholm and index is the same

ind(T |(X0,X1)θ∗ ,q) = ind(T |[X0,X1]θ∗
).
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The uniqueness of inverses on intersection of
interpolated Banach spaces

• A. P. Calderón (1983) If (Ω,Σ, µ) is a measure space and T : Lp(µ)→ Lp(µ)
is a bounded operator for 1 < p <∞, which is invertible for p = 2, then T
is also invertible when 2− ε < p < 2 + ε, for some small ε > 0.

• A careful analysis of Calderón’s proofs gives the compatibility of inverses,
i.e., there exists some small ε > 0 such that for all p, q ∈ (2− ε, 2 + ε),
the inverse T−1 considered on the space Lp(µ) is compatible with T−1

considered on Lq(µ) when both operators are restricted to Lp(µ) ∩ Lq(µ).

• J. Pipher and G. Verchota (1992) shown a useful application of Claderón’s
result for solvability of the Dirichlet problem in a bounded Lipschitz domain
Ω ⊂ Rn with data in Lp(∂Ω):

∆u = 0 in Ω with u = f and ∂u/∂n = g on ∂Ω .
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The uniqueness of inverses on intersection of interpolated Banach spaces

Theorem
[E. Albrecht and V. Müller (2001)] Let (X0,X1) be a complex Banach couple,
T : (X0,X1)→ (X0,X1) and let Tθ := T |[X0,X1]θ for all θ ∈ (0, 1). Suppose that,
for some α ∈ (0, 1)

Tα : [X0,X1]α → [X0,X1]α is is invertible .

Then there exists a neighbourhood U ⊂ (0, 1) of α such that Tθ is invertible and
the inverse operators T−1

θ and T−1
α agree on X0 ∩ X1 for all θ ∈ U, that is,

T−1
θ (x) = T−1

α (x), x ∈ X0 ∩ X1 .
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The uniqueness of inverses on intersection of interpolated Banach spaces

The result mentioned above was the main motivation for us to introduce the
following:

Definition A family {Fθ}θ∈(0,1) of interpolation functors is said to be stable if
for any Banach couples ~A = (A0,A1) and ~B = (B0,B1) and for every operator
S : ~A→ ~B such that the restriction Sθ∗ of S to Fθ∗(~A) is invertible for some
θ∗ ∈ (0, 1), there exists ε > 0 such that, for any θ ∈ I(θ∗) = (θ∗ − ε, θ∗ + ε),
we have

(i) Sθ : Fθ(~A)→ Fθ(~B) is invertible operator;
(ii) S−1

θ : Fθ(~B)→ Fθ(~A) agrees with S−1
θ∗

: Fθ∗(~B)→ Fθ∗(~A) on B0 ∩ B1, i.e.,
S−1
θ y = S−1

θ∗
y for all y ∈ B0 ∩ B1;

(iii) supθ∈I(θ∗) ||S−1
θ ||Fθ(~B)→Fθ(~A) ¬ C ||S−1

θ∗
||Fθ∗ (~B)→Fθ∗ (~A) for some C = C(θ∗).
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The uniqueness of inverses on intersection of interpolated Banach spaces

Intervals of invertibility of interpolated operators

• Remark Let {Fθ}θ∈(0,1) be a stable family of interpolation functors and
let T : (X0,X1)→ (Y0,Y1). Then the set of all θ ∈ (0, 1) for which

T : Fθ(X0,X1)→ Fθ(Y0,Y1)

is invertible, is open, so it is a union of open disjoint intervals. These
intervals we will call intervals of invertibility of T with respect to the
family {Fθ}θ∈(0,1).

• Question Let I ⊂ (0, 1) be any interval of invertibility of T . Is it true
that for any θ, θ′ ∈ I the inverses T−1

θ and T−1
θ′ agree on

Fθ(Y0,Y1) ∩ Fθ′(Y0,Y1)?
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The uniqueness of inverses on intersection of interpolated Banach spaces

The above Question was the main motivation to give the following:

Definition A family of interpolation functors {Fθ}θ∈(0,1) satisfies the (∆)-condition
if for any Banach couple ~A = (A0,A1) and for any θ0, θ1
with 0 < θ0 < θ1 < 1, we have continuous inclusions

Fθ0 (~A) ∩ Fθ1 (~A) ↪→ ∆θ0<θ<θ1 (Fθ(~A)) ↪→ Fθ0 (~A)c ∩ Fθ1 (~A)c ,

where ∆θ0<θ<θ1 (Fθ(~A)) is a Banach space equipped with the norm

‖a‖∆θ0<θ<θ1 (Fθ(~A)) := sup
θ0<θ<θ1

‖a‖Fθ(~A) .

and the Gagliardo completions Fθ0 (~A)c and Fθ1 (~A)c are both taken with respect
to the interpolation sum Fθ0 (~A) + Fθ1 (~A).

M. Mastyło (UAM) Stability of the inverses and Fredholm properties of interpolated operators 23 / 34



The uniqueness of inverses on intersection of interpolated Banach spaces

Recall that a family of interpolation functors {Fθ}θ∈(0,1) satisfies the reiteration
condition if for any Banach couple ~A = (A0,A1) and for any θ0, θ1, λ ∈ (0, 1),
we have

Fλ(Fθ0 (~A),Fθ1 (~A)) = F(1−λ)θ0+λθ1 (~A).

Theorem
[I. Asekritova, N. Kruglyak and M. M.] Let T : (X0,X1)→ (Y0,Y1) and let
I ⊂ (0, 1) be an interval of invertibility of T with respect to the stable family of
interpolation functors {Fθ}θ∈(0,1). Assume that {Fθ}θ∈(0,1) satisfy both the (∆)
and the reiteration condition. Then for any θ0, θ1 ∈ I, the inverse operators T−1

θ0

and T−1
θ1

agree on Fθ0 (~Y ) ∩ Fθ1 (~Y ), i.e.,

T−1
θ0

(y) = T−1
θ1

(y), y ∈ Fθ0 (~Y ) ∩ Fθ1 (~Y ).
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Application for classical interpolation methods

Based on general our results, we obtain the following applications:

Theorem
Let 1 ¬ q ¬ ∞ and let T : (X0,X1)→ (Y0,Y1) and let I ⊂ (0, 1) be an interval
of invertibility of T with respect to the family {(·)θ,q}θ∈(0,1) of real interpolation
functors. Then for any θ0, θ1 ∈ I,

T−1
θ0

(y) = T−1
θ1

(y), y ∈ (Y0,Y1)θ0,q ∩ (Y0,Y1)θ1,q.

Theorem
[N. Kalton, S. Mayboroda and M. Mitrea (2007)] Let T : (X0,X1)→ (Y0,Y1) be
an operator between couples of complex Banach spaces and let I ⊂ (0, 1) be an
interval of invertibility of T with respect to the family {[ · ]θ}θ∈(0,1). Then for any
θ0, θ1 ∈ I,

T−1
θ0

(y) = T−1
θ1

(y), y ∈ [Y0,Y1]θ0 ∩ [Y0,Y1]θ1 .
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Let (X0,X1) be a Banach couple of complex Banach function lattices on a σ-finite
measure space (Ω,Σ, µ). The Calderón product X 1−θ

0 X θ
1 (0 < θ < 1) is defined to

be the space of all f ∈ L0(µ) such that

|f | ¬ λ |f0|1−θ|f1|θ, µ− a.e.

for some λ > 0 and fj ∈ Xj with ‖fj‖Xj ¬ 1, j = 0, 1. The Calderón product is
a Banach function lattice on (Ω,Σ, µ) equipped with the norm

‖f ‖ := inf
{
λ > 0; |f | ¬ λ |f0|1−θ|f1|θ, f0 ∈ BX0 , x1 ∈ BX1

}
.

Theorem

Let (X0,X1), ~Y = (Y0,Y1) be couples of Banach lattices with the Fatou property.
Assume that T : (X0,X1)→ (Y0,Y1) is such that T : X 1−θ∗

0 X θ∗
1 → Y 1−θ∗

0 Y θ∗
1 is

an invertible operator for some θ∗ ∈ (0, 1). Then there exists δ > 0 such that

T : X 1−θ
0 X θ

1 → Y 1−θ
0 Y θ

1

is an invertible operator whenever |θ − θ∗| < δ.
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Appendix

Stability of Fredholm properties on interpolation
scales of Banach spaces
Definitions [following M. Cwikel, N. Kalton, M. Milman and R. Rochberg (2002)]

• Let Ban be the class of all Banach spaces over the complex field. A mapping
X : Ban→ Ban is called a pseudolattice, or a pseudo-Z-lattice, if
(i) for every B ∈ Ban the space X (B) consists of B valued sequences
{bn} = {bn}n∈Z modelled on Z;
(ii) whenever A is a closed subspace of B it follows that X (A) is a closed
subspace of X (B);
(iii) there exists a positive constant C = C(X ) such that, for all A, B ∈ Ban
and all bounded linear operators T : A→ B and every sequence
{an} ∈ X (A), the sequence {Tan} ∈ X (B) and satisfies the estimate

‖{Tan}‖X (B) ¬ C‖T‖A→B‖{an}‖X (A);

(iv)
‖bm‖B ¬ ‖{bn}‖X (B)

for each m ∈ Z, all {bn} ∈ X (B) and all Banach spaces B.
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• For every Banach couple ~B = (B0,B1) and every Banach couple of
pseudolattices ~X = (X0,X1), let J ( ~X , ~B) be the Banach space of all
B0 ∩ B1 valued sequences {bn} such that {ejnbn} ∈ Xj(Bj) (j = 0, 1),
equipped with the norm.

‖{bn}‖J ( ~X ,~B) = max
{
‖{bn}‖X0(B0), ‖{enbn}‖X1(B1)

}
.

• For every s in the annulus A := {z ∈ C; 1 < |z | < e}, we define the
Banach space ~B ~X ,s to consist of all elements of the form b =

∑
n∈Z snbn

(convergence in B0 + B1 with {bn} ∈ J ( ~X , ~B), equipped with the norm

‖b‖~B ~X ,s
= inf

{
‖{bn}‖J ( ~X ,~B); b =

∑
n∈Z

snbn

}
.

It is easy to check that the map ~B 7→ ~B ~X ,s is an interpolation functor.
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• A couple ~X = (X0,X1) of Banach pseudolattices, is said to be translation
invariant if for any Banach space B,∥∥{Sk({bn}n∈Z

}∥∥
Xj (B) =

∥∥{bn}n∈Z
∥∥
Xj (B)

for all {bn}n∈Z ∈ Xj(B), each k ∈ Z and j ∈ {0, 1}, where is the left-shift
operator defined by S{bn} = {bn+1}.

• ~X = (X0,X1) is said to be a rotation invariant Banach couple of
pseudolattices whenever the rotation map

{bn}n∈Z 7→ {e inτbn}n∈Z

is an isometry of Xj(B) onto itself for every real τ and every Banach space B.
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Theorem

[I. Asekritova, N. Kruglyak and M. M.] Let ~X = (X0,X1) be a couple of rotation
and translation invariant pseudolattices and let {Fθ}θ∈(0,1) be a family of
interpolation functors given by Fθ(X0,X1) := (X0,X1) ~X ,eθ for any Banach couple
(X0,X1). Suppose that Fθ is regular functor and Fθ(X0,X1) = Fθ(X◦0 ,X◦1 ) for any
Banach couple (X0,X1). If T : (X0,X1)→ (Y0,Y1) is such that the operator

T |Fθ∗ (X0,X1) : Fθ∗(X0,X1)→ Fθ∗(Y0,Y1) is Fredholm.

Then there exists ε = ε(θ∗, ~X ) > 0 such that for any θ ∈ (θ∗ − ε, θ∗ + ε) the
operator

T |Fθ(X0,X1) : Fθ(X0,X1)→ Fθ(Y0,Y1)

is also Fredholm and ind(T |Fθ(X0,X1)) = ind(T |Fθ∗ (X0,X1)).
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Theorem

[I. Asekritova, N. Kruglyak and M. M.] Let ~X = (X0,X1) be a Banach couple of
translation invariant pseudolattices and let T : ~X → ~Y be an operator between
complex Banach couples. Assume that T : ~X ~X ,s → ~Y ~X ,s is invertible for some
s ∈ A. Then Tω : ~X ~X ,ω → ~Y ~X ,ω is invertible for all ω in an open neighbourhood
W = {ω ∈ A; |ω − s| < r} of s in
A with

r =
[
2δ(s)

(
1 + ‖T‖~X→~Y ‖T

−1‖~Y ~X ,s→~X ~X ,s

)]−1
,

where δ(s) = max
{

(|s| − 1)−1, (e − |s|)−1}. Moreover the following upper
estimate for the norm of Tω holds,∥∥T−1

ω

∥∥
~Y ~X ,ω→~X ~X ,ω

¬ 2
∥∥T−1

s
∥∥
~Y ~X ,s→~X ~X ,s

, ω ∈W .
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Theorem

[I. Asekritova, N. Kruglyak and M. M.] Let ~X = (X0,X1) be a couple of
translation and rotation invariant pseudolattices and let T : ~X → ~Y . Assume that
Tθ∗ : ~X ~X ,eθ∗ → ~Y ~X ,eθ∗ is invertible for some θ∗ ∈ (0, 1). Then Tθ : ~X ~X ,eθ → ~Y ~X ,eθ
is invertible for all θ in an open neighbourhood I = {θ ∈ (0, 1); |θ− θ∗| < ε} of θ∗
with

ε =
[
2eη(θ∗)

(
1 + ‖T‖~X→~Y ‖T

−1‖~Y ~X ,eθ∗→~X ~X ,eθ∗

)]−1
,

where η(θ∗) = max
{

(eθ∗ − 1)−1, (e − eθ∗)−1}. Moreover T−1
θ agrees with T−1

θ∗

on Y0 ∩ Y1 and∥∥T−1
θ

∥∥
~Y ~X ,eθ→~X ~X ,eθ

¬ 2
∥∥T−1

θ∗

∥∥
~Y ~X ,eθ∗→~X ~X ,eθ∗

, θ ∈ I.
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